Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
场景: 在 Google 的技术面试中,面试官喜欢将经典的算法问题包装在 Google 产品的真实场景中,考察你是否能识别问题本质,并设计出可扩展的解决方案。
💻 原题
Original Question (English)
Imagine you are working on YouTube’s data processing pipeline. You receive streams of user watch events from k different regional data centers (e.g., North America, Europe, Asia). Each stream contains watch events, which include a timestamp and a video_id. The events within each regional stream are already sorted by timestamp.
Your task is to design a component that merges these k streams into a single, globally sorted stream of watch events, ordered by timestamp.
题目简述 (口语化)
想象一下,你是 YouTube 的工程师。全球有 k 个数据中心(比如北美、欧洲、亚洲),每个数据中心都在源源不断地传来用户的视频观看记录。每个数据中心的记录流内部,已经按时间戳排好序了。
你的任务是设计一个服务,把这 k 个数据流合并成一个全局统一、按时间先后顺序排列的观看记录流,用于后续的分析。
示例:
north_america_stream = [ (1:30:05, “video_A”), (1:30:09, “video_C”) ]
europe_stream = [ (1:30:06, “video_B”) ]
asia_stream = [ (1:30:05, “video_D”), (1:30:10, “video_E”) ]
一、和面试官快速澄清 (The Google-Mindset Clarification)
在 Google,展示你的产品和系统思维至关重要。oavoassist 会引导你像一位 Google 工程师一样,首先思考边界和规模:
二、思路总览 (From Naive to Scalable)
解法 A:批量合并后排序 (The Batch Processing Approach)
解法 B:K 路归并 (The Real-time Streaming Merge with a Min-Heap) ✅ 满分答案
三、手撕思路要点 (Live Whiteboarding Blueprint)
在 oavoassist 的实时引导下,你可以自信地在白板上或在线编辑器中勾勒出以下伪代码:codePython
class GlobalEventMerger:
def __init__(self, regional_streams):
# Min-Heap stores tuples: (timestamp, region_id, event_data)
self.min_heap = MinHeap()
self.streams = regional_streams
self._initialize_heap()
def _initialize_heap(self):
for region_id, stream in enumerate(self.streams):
if stream.has_next():
event = stream.get_next()
self.min_heap.push((event.timestamp, region_id, event))
def get_next_global_event(self):
if self.min_heap.is_empty():
return None
# Get the globally earliest event
timestamp, region_id, event = self.min_heap.pop()
# Fetch the next event from the same regional stream
source_stream = self.streams[region_id]
if source_stream.has_next():
next_event = source_stream.get_next()
self.min_heap.push((next_event.timestamp, region_id, next_event))
return event
四、常见追问与扩展 (Handling Google’s Follow-ups)
Google 面试官非常喜欢考察系统的鲁棒性和可扩展性:
五、oavoassist 实时辅助还原 (How We Ensure Your Success at Google)
面对 Google 这种级别的面试,知道答案和能拿 Offer 是两回事。oavoassist 确保你做到后者:
最终效果: 你向面试官展示的,不仅是一个算法解题者,更是一位具备系统思维、能处理大规模数据、并能预见未来挑战的潜在 Google 工程师。
📩 如果你即将挑战 Google,不要让任何一个细节成为你的短板 —— 联系 oavoassist。
我们陪你走过从读题、澄清、设计到应对追问的全过程,确保你在面试的每一分钟,都展现出符合 Google 标准的思维深度和专业素养。